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SELFSIMILAR SOLUTIONS OF THE PROBLEM OF HEAT AND MASS TRANSFER IN A 
SATURATED POROUS M~IUM WITH A VOLUME HEAT SOURCE* 

N.EH. ZYONG, N.D. MUSAYEV and R.I. NIGMATULIN 

Selfsimilar solutions of a system of stationary equations of heat con- 
dunction and filtration of molten material in the presence of a volume 
heat source generated by absorption of the energy of electromagnetic 
radiation, are considered. The possibility of the existence of a self- 
similar solution in the case of various (plane, cylindrical and spherical) 
spatial symmetriesisstuaiea. The existence of a selfsimilar solution 
is shown for the axisymmetric case when the radiation obeys a prescribed 
law. The influence of the surface volume heating and convective heat 
transfer due to filtration is studied. A solution for the case when the 
filtration of the molten phase is quasistationary is also investigated. 

1. Let the pores of a solid (first component) be filled, at first, with a very viscous 
(becoming solid in the limit) medium (second component), which becomes, when heated, pro- 
gressively less viscous (diluted) and tends to expand due to the action of heat conduction 
and absorption of high frequency electromagnetic radiation (HFER) (of frequency 10-'---10-* MHz). 
The dilute component may flow under the action of a pressure difference relative to the fixed 
porous solid, e.g. in a well. Such a process can be utilized to extract highly viscous 
(bituminous) oils /l-4/, gas hydrates, in drying and purifying porous materials, etc. 

The thermodynamics and hydrodynamics of the process of heating a saturated medium is 
studied using the methods of the mechanics of continuous'media, taking into account a possible 
phase transition of the first kind, of the melting or solidifying type, for the saturating 
(second) component, under the following basic assumptions. 

lo * The process of melting takes place at a geometrical surface, i.e. at the melting 
front of zero thickness (Stefan's idea of the melting process). 

20. outside the melting front (a surface of strong discontinuity) the distances at which 
the parameters of the medium very substantially (e.g. the characteristic lengths of the HFER 
energy absorption zone) are much greater than the characteristic pore sizes, and the distances 
between them, which in turn are much greater than the molecular and kinetic dimensions (e.g. 
the molecular mean free path). 

3O. The temperature of the phase and components in each elementary volume of the porous 
medium are the seme. 

4O. The motion of the liquid (molten) phase in the porous medium is inertialess and obeys 
D'Arcy's law. 

5O. There is no volume change in the solid phase and no deformation of the skeleton of 
the porous medium. 

The first assumption can be used when the size of the phase transition (melting) zone is 
very much less than the wavelength under investigation and the characteristic length of the 
problem (e.g. the characteristic length of the HFER energy absorption zone). Under the 
second assumption we can study the dynamics of the system consisting of a porous solid (the 
first component) filled with a liquid (molten) and solid (non-molten) phase of the second 
component outside the melting front, within the framework of a model of three interpenetrating 

and interacting continuous media: 1) the liquid (molten) phase 

T 

~ 

of the second component, 2) the solid (non-molten) phase of the 
second component, 3) the first component, i.e. the skeleton of 

Tb - the rock. Furthermore, the parameters corresponding to these 
media are denoted by the indices i = 1,2,3; the indices m, b 
denote the parameters of the medium at the melting front and at 
the well boundary; ai is the volume fraction of the i-th phase, 

Tj - ---- T is the temperature, m is the porosity, x is the spatial 

T, 
coordinate, ;ts is the well radius (the size of the HFER source), 

!7 rll r&1 X &At) is the coordinate of the melting front in motion, and t 
is the time. 

Fig-1 Thus in accordance with the above assumptions and notation, 
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the front x,,(t) at which melting occurs will represent a boundary separating the zone of the 
solid porous skeleton (third phase) filled with the molten second component (first phase): 
+ C: z < ;c, (t), a, = m, a, = 0, CL-~ = 1 - m, T > T, and the zone of porous solid filled with the 
solid second component (second phase): x>xSZ,,(t),el =O,a,=m, a,=%--, i.e. in the present 
scheme we have no zone containing a mixture of the molten and solid second component (the 
first and second phase): axa2 = 0. The characteristic temperature distribution occurring 
when the medium is heated, due to heat conduction and absorption of the HFER energy is shown 
in Fig.1 (the radiation source is situated at the origin of coordinates). 

The thirdassumptionenablesustodescribe the process in question within the framework of 
a single temperature model. This is due to the fact that in the majority of important prac- 
tical cases the characteristic time of smoothing the phase temperatures (lO-l-fO secf is much 
shorter than the characteristic time needed to heat the medium by means of an external heat 
source and the characteristic time of the hydrodynamic process (f04--106 set). The latter 
assumption can be adopted when the displacement of the melting front caused by the expansion 
of the solid before the front is small compared with the displacement of this surface caused 
by the phase transition. In this case the problem simplifies, since the temperature field 
before the melting front can be determined without solving the equation of motion. 

Under the above assumptions , the equations of continuity , of filtration of the phases and 
of heat influx (heat conduction) of the mixture outside the surface of strong discontinuity 
(the melting front xm((t)) can be written, for the case of one-dimensional symmetric (plane 
v = 0, cylindrical Y = 1 and spherical Y = 2)motion in the Eulerian (5, I)-coordinate system 
in the following form /5-7/: 

(1.1) 

(1.2) 

(1.3) 

al-t-aa+aa=l, u,+a,=m 
aIcLz = 0 

(1.4) 

(1.5) 

where Pi, Pi> uit Ci, pi, &i aret respectively, the density, pressure, velocity, viscosity, heat 
capacity and thermal conductivity of the i-th phase, k is permeability, A is the work done 
by internal forces and Q is the intensity of the volume heat source. Moreover, the heat 
capacity c and thermal conductivity h of the mixture are additive with respect to the masses 
and volumes of the phases respectively: 

Henceforth, we shall consider the case in which the contribution of the work done by 
internal forces A towards the temperature change can be neglected (A <Q). 

In order to close the system of differential Rqs.(l.l)-(1.3) we use the following equations 
of state of the phases: 

PI = Prolf i B, (PI - p0)1, pI = eonst, p3 = const 

where #Xp is the compressibility of the liquid phase. 
When the pressure drops Ap<lOa MFa and &, N iOwS Mpa-l, we have 

(1.7) 

From this it follows that the convection component of the liquid phase density change can 
be neglected. Then from (1.1) we obtain, taking into account f1.73, the following linear 
equation of piezoconduction: 

where x i's the coefficient of piezoconduction. The problem of the pressure distribution 
in front of the melting front (z> rVZ((t)) refers, in the present formulation (pa = con&, p3 = 
const, m = const), to the class of statically undetermined problems, and the above distribution 
does not affect the distribution of the remaining parameters. 
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The distribution of the heat sources Q appearing as the result of the absorption of the 
HFER energy is found from Poynting's equation and the Bouguer-Lambert law for a monochromatic 
wave: 

Q = -V .R; V .R = R/L (L> 0) 
(1.9) 

where R is the radiation intensity vector and L is the wavelength at which the medium in 
question absorbs the energy of the electromagnetic wave (EW). When a one-dimensional mono- 
chromatic wave (plane, cylindrical and spherical) propagates through a homogeneous isotropic 
medium, the equation for the radiation intensity and boundary condition at the well has the 
form 

;(x’R)+?; I = Xb, R=Rb=$_ 
L 

(1.10) 

sb = x b) xb'; x (0) = 1, x (1) = al, x (2) = 43-l 

where Rbis the radiation intensity at the boundary of the well (z = zb) given in terms of 
the intensity N@) and surface area S, of the radiator. 

Generally, the absorption wavelength for the given medium is determined by the frequency 
o of EW and depends on the pressure p and temperature (F.L. Sayakhov et al (see /l, 3/) 
carried out a large number of determinations of the electrophysical parameters necessary to 
calculate L for the materials used in petroleum technology; earlier, test measurements of 
these parameters were carried out in /4/). It was found that even at a fixed frequency w 
the equation for the thermodynamic parameters (l.l)-(1.7) and equations for Q and the electro- 
physical parameter R were interrelated, i.e. they had to be solved together. 

Often the effect of the pressure p and temperature on the absorption wavelength L can 
be neglected. then, for a fixed o the quantity L will become an a priori known parameter 
which will give at once the radiation intensity R and volume heat source intensity Q in- 
dependently of the solutions of the thermohydrodynamic equations: 

(1.11) 

Remembering that the EW can be reflected from the melting surface s,(t), i.e. from the 
surface at which the electromagnetic properties of the medium become discontinuous, we can 
represent the volume heat source for the whole mixture, in the following form: 

xb < x < &n (t) 

Q&($)Y[exp (-F) + 
(1.12) 

Here the parameter H CO< H< 1) h c aracterizes the reflection of the wave in question 
from the interphase boundary, and is determined as the ratio of the energies of the reflected 
and incident wave. (We have (H=O for zero reflection, and H = 1 for the total re- 
flection). We denote the parameters ofthemixture (the absorption wavelength) in the regions 
of the molten (xb <s<sm(t)) and non-molten (x>,xm(t)) second component by the subscripts 
1 and s respectively. We must also remember that Qk > 0 (k = 1,s) always holds. 

The system of Eqs.(1.2)-(1.8) (taking (1.121 into account) is closed. It can be used 
to study the laws governing the heating of a mediumbyheat conduction (a surface heat source 
qb) and absorption of HFER energy (a volume heat source Q). The corresponding mathematical 
problem consists of obtaining a solution of the system of Eqs.(1.2)-(1.8) withthe,following 
initial and boundary conditions: 

t = 0, T = T, < T, 

z = r,, T = Tb or h,Sb (r3T/cYx) = -qb 

mSb~lbvlb = gb 

x+$-00, T-T, 

and conditions at the melting front x,(t): 

(1.13) 

(1.14) 

(1.15) 

(l.iS) 

(1.17) 
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(1.18) 

here g, is the total mass flux of the liquid (first) phase, j, E is the intensity and 
specific heat of the phase transition, qi,qs are the heat fluxes arriving at the interphase 
surface from the direction of the moving and immobile phases, & = q(q,t) is the intensity of 
the total heat flux across the boundary x =xb(qb)>O corresponds to the case when heat is 
fed in, and qb(O corresponds to the case when the heat is removed, qb =0 means that there 
is no heat conduction at the well boundary , and the subscript 0 characterizes the parameters 
of the initial state. Equations (l.lt), (1.18) are obtained from the condition of mass 
balance and from the quasistatic (filtration) approximation to the energy balance at the 
interphase boundary xm((tf. The specific beat of phase transition E representing the difference 
between the enthalpies of the phases , is used up by the change in internal energy of the 
medium and by the work done by the pressure forces during the phase transition. 

We note that in /8/ the energy equation at the interphase boundary has redundant terms 
of the form p~mc~v,,T,, mp,,clT, (&,l&). A detailed discussion of the equation of conservation 
at the interphase boundaries is given in Chapter 2 of the book /7/. 

In general, the liquid parameters of the first phase at the melting front must be 
determined from the condition of phase equilibrium along the line of melting, using the 
Clapeyron-Clausius equation for T,(p). Henceforth, we shall assume (see /9/) T, =const. 

2. Usually, the radius of the well is much less than the characteristic linear dimen- 
sions of the problem, and is therefore not realized. In this case the boundary conditions 
determining the beat fluxes &r liquid phase flow rate g, and the influx of xadiation &, are 
given in the form of the limiting relations (r&+@: 

lim ihbsb kb) ~jz_,] = - 46 

lint bSbp,bvlbl = gb 

lim [&,& (&I = N@' (St, = x (v);t&') 

(2.1) 

@a 
(2.31 

We shall consider, for the system of equations given above, possible selfsimilarsolutions 
depending on a single variable z = .$p. The equation of heat conduction in the melting zone 
now takes the form 

(2.4) 

For a selfsimilar Solution to exist, it is necessary that all coefficients of this 
equation depend only on s and be independent of e. In particular, anefysing the second term 

within the square brackets of the equation heat conduction, we find that n = -1. The analysis 
of thelastterm, connected with the absorption of the energy p, yields v-1,and 

Lk = f&i. (hk = Con&), k = 1, S (2.51 

Therefore, in the discussion that follows, we shall confine ourselves to the axisymmetric 
case (v = 1,x@}= 2s). The law of variation of the absorption wavelength 12.51 canbeobtained 
by varying the frequency o of the wave in question with time. 

We note that without the volume heat sources, i.e. in the case when the medium absorbs 
no EW energy (Q = 0), we see from (2.4) that a selfsimilar solution of the problem in question, 
taking the filtering motion of the liquid phase of the second component with velocity Vl (2) 
into account, can exist for any Y = O,l, and here, as before, we have n = --1. 

3. In order to analyse the equationsgiven, it is best to introduce the following dimen- 
sionless variable parameters which, together with the coefficient of porosity m, determine 
the solutions of the problem in question: 
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(3.2) 

In accordance with (3.1), (3.2), Eq.(1.8) and boundary conditions (2.2) and (1.17) have 
the form 

0<5<E,I -&(E$+&..+o, 5=5,, P=P, 

I, = 0, r, (dP/dg) = -Gb 

(3.3) 

(the constants i&,, and P, must be specified). The solution of this problem is determined 
by the following expression in terms of the exponential integral function: 

Od~<&,,~ PK)=P,,,--Gb[Ei (-A)-Ei(-&)I 
P,_l+A!gL, 

P 
til,=s, 1-p 

[ m 
exP(-$)rl 

(3.4) 

(3.5) 

The quantity cm will be determined below. 
As we have already said, the fact that BP = Ap<l implies that in order to find the 

temperature fields 6 (0, we can assume that p1 = pi,, in (1.3), i.e. we can neglect the 
change in density of the liquid (molten) phase caused by a change in the pressure. Then from 

(1.3), (1.14), (2.1) and (1.16)-(1.18), taking (1.2) and (3.4) into account, we obtain the 
following ordinary differential equations and boundary conditions: 

+ ~ik (a] $ = - Qi* (E) (k z 1, S) 
(3.6) 

5 = 0, 0 = eb or 6de/dt = -qb* 
(3.7) 

(Q** = %02X(V) W) 

e16=6,,,-o=e1:=6,+o=i (3.8) 

- GIdeid616=t,,-o+ G,deid5 If-E,,+o=m/4 (3.9) 

6-f+, e-8, 

0<5,<t,, ak* = q* = 1, 1/t (5) = VI CJ = 
(3.10) 

-MMG,exp(-A), M=mB,=@,,x* 
(3.11) 

x 

5>5,? l+*=a,*, V,(<)=V,(C)=O 

Qi*(:)=QQ;*(:)=(1-_)~exp(_~+1/6;;;h;JS) 
I 1 * 

(3.12) 

The solutions of these equations have the form 

(3.13) 

(3.14) 
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(z,(;,=- - jF,(u)x,(u)du, J,(I)=ci X,(u)du 

‘: i*(t) 
F,(u) = \ +dE. 

6, 

where Cl, D1, C, and D, are the constants of integration determined by the boundaryconditions 
at 6 =O, 5 = c,,, and c+ j-co given in (3.71, (3.8) and (3.10). This shows that for the 
problem in question the dimensionless similarity criteria are represented by the parameters 
(3.2) characterizing, respectively, the ratio of the heat emission to the heat conduction 

(KI and K,),the influence of the thennophysical property of the phases (M and a,*), the 
ratio of the piezoconductivity to the thermal conductivity (x*), the influence of the mass 
transport (Gb), the effect of the electrophysical properties of the medium (h,*,h,* and H), 
the influence of the melting process (G, and G,; see (4.9) below), and also the parameters 
fJb or qb*, 00 and m appearing in the boundary conditions. A total of 14 parameters in all 
determines the set of selfsimilar solutions in question. 

4. It can be shown that the following asymptotic expressions hold as <-+ +0: 

x, (5) - c-l+a, F, (5) - 5 u-“*-~ du 
44.0 

When c+ -/-co, the integrals in (3.14) converge. The existence of solutions and the 
solution itself of the problem in question, depend on the sign of Gb and the typeofboundary 
conditions. 

a) For Gb>O when the molten material flows from the well (v,>O) and a boundary 
condition of the first kind is specified at the well 

5 = 0, e = eb = const > 1 (4.2) 

the selfsimilar solution of the problem in question exists and has the form 

5 > La, e (5) = 1 + I, (t) + 10, - 1 - 1, ($.oo)l - 
J, (5)/J, (+~I 

The pressure field in the molten (first) phase is determined using relation (3.4). 
From (4.3) it follows that 

qb * = --5 (dWd&, = 0 

When a boundary condition of thesecond kind (with a finite, non-zero heat flux) is 
specified, then for c = Othe problem has no selfsimilar solution. 

b) For G* = 0, the molten phase of the second component is not in motion (v, = 0) and a 
finite boundary condition of the first kind (finite temperature) is specified at the well, 
the problem has no selfsimilar solutions. When a boundary condition of the second kind is 
specified at the well 

5 = 0, 6 (dO/dS) = -qb* (4.4) 

we have a generalization of the selfsimilar solution of the classical Stefan problem (without 
convective heat transport), taking into account the volume heat source 

0-s 6 g Cm, 8 (5) = 1 + I1 (6) + [q** + F! m 4 (5) (4.5) 

c > cm, 0 (6) = I + I, (6) + fee - 1 - 

1s c+=J11 J, (CYJ, (+m) 

In this case the temperature field e(I;) as 6-+ +0, tends to infinity as ln(l/Q. 
c) For Gb(OI the molten material moves towards the well (vl<O) and the finite 

temperature or finite heat flux is specified for 5 = 0, the problem has no selfsimilar 
solutions. However in this case we can use (3.13) and (3.14) to seek a solution for the case 
when a generalized boundary condition 

5 + +O, 5 (dO/dS) - - qb* P, a = MG, (4.6) 
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where qb* is a given constant determined by the asymptotic behaviour of the 
due to thermal conduction at the well. Then the temperature fields will have 

O< 6< I;mr 6 (5) = 1 -t II(~) + [qb* exp (--M&B)+ 
F1 @)I Jr (6) 

(4.7) 

(B = lim IEi (-ZL) - In (u)]) 

5i sm”,” 0 (5) = 1 + I, (5) + IB, - 1 - 
13 (+=)I Js (6)/J, (+w) 

The solution (4.7) is a generalization of (4.5) forthecase Gb<O. Formally, (4.5) 
follows from the solution (4.7) as G,+O. In this case the temperature and the heat flux 
both tend to infinity as G-+ +O. 

In order to determine the parameter c,which provides the law of motion of the melting 
front in the form 

we obtain, from the equation of energy balance at the interphase boundary Xm (t) (3.9), 
taking into account (3.13) and (3.14), the equation 

For porous media we have, as a rule, x> al. Therefore, remembering that x*++cc, 
we can simplify the relation X,(u) in the course of determining the temperature distribution 
(see (3.13)) thus: 

XI (u) = n-r+a exp (--u/4) 

This approximate distribution of the temperature of the medium corresponds to the 
solution of the equation of heat conduction (3.6) with the following velocity field of the 
molten material: V, (5) = --MGd6, which corresponds to the solution of the equation of piezo- 
conduction (1.8) in the quasistationary approximation (a&at = 0)when the pressure field can 
be represented in the form P(c) = P,,, - Gbln(tJ&,,). 

Let us analyse the solutions (4.3), (4.5) and (4.7). We obtain from (4.31, after dif- 
ferentiating, i.e. when Gb>O and +>o, 

0 d 5 f cm, -$ = Xl (51 [ F, (5) - 
8, - I -I, (0) 

J, V-9 1 

This implies that when no EW energy is absorbed by the medium (Q= o), the function e(5) 
in the region occupied by the molten phase of the second component (0~ 6< &,,) is concave and 
decreases uniformly from &, to 1. When a volume heat source is present (Q>O), the function 

0 (6) may become convex and non-monotonic. Moreover, e(g) cannot have more than one maximum. 
Fig.2 shows the characteristic temperature profiles of the medium O(c)b in the region 

occupied by the molten material (O< c<&,,), for &,>O and various intensities of the volume 
heat source Q. Curve 1 corresponds to the case Q= 0. When Q increases, e.g. as a result 
of an increase in N@), a maximum appears in the distribution e(c) and the convexity of O(C) 
becomes more pronounced (curve 3). CurvesZand 3 in Fig.2 correspond to the case Q>O. In 
all cases the melting front corresponds to the point 5,,, = +,,Vatt. 

It can be shown that the solutions (4.5), (4.7) are physically meaningfulonlywhen qb>o, 
since otherwise from (4.5) and (4.7) it follows that when 6-+ 0, the temperature e(c) 
becomes negative and tends to infinity as 1nE and -_6" (a= M&,) respectively. 

However, in this, and other such cases, the solutions of the problem can be studied using 
a two-front formulation /9/. 

Fig.3 shows characteristic profiles of the temperature fields and of the medium e(c) in 
the region occupied by the molten material (0~ 6q 6,) for the cases G=o and &,<o (the 
first relations in the solutions (4.5) and (4.7)). When 4b=O(Q>O), the temperature of the 
mediumatthe centre O(O) is finite (curve 1) inbothcases. When @>O(Q>O)the temperature tends 
to+= (curve 2 in Fig.3). 

5. We find that within the model of discontinuity adopted here, separating the solid 
(non-molten) and liquid (molten) phase of the second component, the thermohydrodynamic 
processes within the region occupied by the liquid phase (O,< G< &,,) affect the heating 
process within the solid phase (L> &,,) only through the dynamics of the melting front s,(t), 
namely through the parameter cm. We see from the solutions (4.31, (4.5) and (4.7) that the 
temperature distributions of the medium in the region occupied by the solid second component 
(I,> &,,) have the same form for all three cases (Gb > 0, G,, = 0 and G1,( 0). The solutions 
also imply that in the region E> &,, 
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Fig.2 

From this we can obtain the condition for non-existence of a zone of superheated solid 
(non-molten> phase of the second component (the condition that the temperature field of the 
medium 5(5) does not increase with respect to p when 52 &,,) 

A (+m) + 1 - 5, ,‘- 0 (1, (+ 00) -< 0) (5.3) 

When no EW energy is absorbed by the medium (Q = 0), we have I,(+oo)== 0. Therefore the 
condition (5.2) always holds by virtue of 5°C 1. In the presence of a volume heat source 

(0 > '3 we have I, (foe)< 0. The quantity r,(i-oo) decreases as Q increases, and this can 
lead to violation of condition (5.2) and hence to the loss of the monotonic form of the 
temperature field of the medium intheregion 5 :s $,,,Z, i.e. to the appearance of a zone of 
superheated solid second component (cm< << <*, 0(c)> 1 where 0(,&J = 1). 

Fig.4 shows the characteristic profiles of the temperature fields of the medium 5(c) 
in the region 5> 5m for the different intensities of the volume heat source Q. Curve 1 
corresponds to the case Q = 0, curve 2 to the case when there is no zone of superheated 
solid second component (second phase): 5(c),< 1, and curve 3 corresponds to the case when 
there is a zone of superheated second phase: L< 5< L 5 (L) > 1 (f, (Coo) -f- 1 - eo< 0) tin 
the last two cases Q>O). In (~,t) coordinates the size of the zone of superheated second 
phase increases with time according to the law (f& - tfc) fz). When Cl0 = 1, we see from 
(3.13) and (5.2) that for any Q>O th e zone of superheated second phase will be of infinite 
size since in this case we have for any c> &,,, 0(5)>1. 

It should be noted that the presence of a zone of superheated second phase (non-molten 
second component) implies that the model of discontinuity (Stefan scheme) separating the 
solid (non-molten) and liquid (molten) phase of the second component cannot be used to 
describe the phenomenon in question. In this case, in order to carry out a mathematical 
modelling of the process we must replace the melting surface by a two-phase zone of melting, 
of non-zero thickness. The liquid and solid phase of the second component will exist simul- 
taneously within #is zone (u,a,#O) and the temperature will be equal to the melting 
temperature (5 = 1). 

6. Selfsimilar solutions of a more specific system of differential equations of heat 
conduction and filtration of a molten material without volume heating (Q= 0) were studied in 
/5/ for the plane, and in /lo/ for the axisymmetric case. The selfsimilar solution of this 
problem was studied, taking into account the convective heat transport caused, as in Sect. 
2-5, by the difference in the densities of the solid and molten phase of the second component. 
The selfsimilar solution oftheproblemwithoutfiltration (vl= 0) and without convective heat 
transport in the equation of heat conduction, was obtained in ./11,12/. However, an erroneous 
equation of energy balance atthe interphase boundary used in /S/ (see the discussion of Eq. 
(1.19)) has led to an incorrect value of a, and hence to an incorrect determination of the 
law of motion of the melting front rm(f)=j/5m12ft. Tbe solution of the equation of heat con- 
duction in the molten phase zone of the second component (see (3.6), (3.11)) obtained in /lo/ 
for the case C&CO and Ql*= 0,is also incorrect. Moreover, the problem in the mode shown, 
when the molten material flows in the well and the final boundary conditions of any type (the 
final temperature or final heat flux) are given, has no solution when %- 0. The analysis of 
theexistenceofthe solutionoftheproblemandthe solutionitself,when Q= 0, forthecasesGb<O, 
&= 0 and G~)O when follows fromSect.2-5ofthispaperwhen Q,*(L)= Q,*(c)= 0 (I,(E)= I,(E)= 0). 

7. We can single out two limiting cases. In the first case the second component is in 
the liquid state everywhere (aI= m>O, a,(~, t)= 0). Then we must put &,,= Jr00 in the solution 
in question, and we have 
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F, @) = [ Xi1 (5) Qi* (f) do, 
u 

When a finite pressure is given at infinity, the problem has no solution in the quasi- 
stationary approximation (apiiat= 0) for 4 # 0 kz 3 '2. When &= 0 (a= O), we have a trivial 
stationary pressure field P (Q = P,= PO= 1 &'o=Pf~*m)). 

If we take into account the dependence of the viscosity of the liquid phase of the 
second component on temperature, the temperature and filtration equations will depend on each 
other and the equation of piezoconduction (1.8) will become non-linear. 

In the second limiting case there is no liquid phase of the second component and no 
melting a, (5, t) = 0, cr, = na, q = 0, G = 0, cm = 0, and the temperature distribution is given by (3.14). 
Here we have 

F8 (WI= 5 Xi1 (0 Q,* (6) dE 
1 

The selfsimilar solutions of the resulting system of differential equations can be used 

Of 

1. 

2. 

3. 

4. 

5. 
6. 

7. 
8. 

9. 

equations. 

REFERENCES 

SAYAKHOV F.L., FATYKHOV M.A. and KUZNETSOV O.L., Investigation of electromagnetoacoustic 
action on the temperature distribution in oil-saturated rocks. Izv. VUZ. Neft' i Gaz, 
3, 1981. 

BRIDGES J., STRESTY G.,TAFLOVE A. andSHOWR<, Radio-frequencyheatingto recovery oil from 
Utan tar-sands. The future of heavy crude oils and tar-sands. N-Y., McGraw-Hill Inc. 1980. 

VAKHITOV G.G. and SIMKIN E-M., Use of Physical Fields in Extracting Oil from Strata, Moscow, 
Nedra, 1985. 

AIRAPETYAN M.A. and SLWPIN N.I., Some results of investigating E and tgS for sands of 
varying porosity, moistuxe content and saturation with oil. Tr. In-ta Nefti, Akad. Nauk 
KazSSR, 3, 1959. 

POLUBARINOVA-KOCHINA P.YA., Theory of Motion of Groun Waters. Moscow, Nauka, 1977. 
BARENBLATT G.I., ENTOV V.M. and RYZHIK V.M., Motion of Fluids and Gases in Natural Strata. 
Moscow, Nedra, 1984. 

NIGMATULIN R.I., Fundamentals of the Mechanics of Heterogeneous Media. Moscow, Nauka, 1978. 
VERIGIN N.N., KHABIBULLIN I.L. and KHALIKOV G.A., Selfsimilar solutions of certain problems 
of heat and mass transfer in a saturated porous medium. Inxh.-Fiz, Zhurn. 37, 3, 1979. 

ZYONG NGOK KHAI, KUTUSHEV A.G., and NIGMATULIN R.I., On the theory of filtration of a fluid 
in a porous medium under volume heating with a HF electromagnetic field. PMM, 51, 1,1987. 

10, VERIGIN N-N., ~IBU~IN I.L. and KHALIICOV G.A., Axisymmetric problem of heat and mass 
transfer in a saturated porous medium. Inzh.-Fiz. Zhurn. 38, 5, 1980. 

11. TIKHONOV A.N. and SAMARSKII A.A., Equations of Mathematical Physics. Moscow, Nauka, 1972. 
12. RUBINSHTEIN L-I., Stefan Problems. Riga, Zvaigzne, 1967. 

Translated by L.K. 


